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~YDRODYN~I~ OF TtlE PROCESS OF FOAM FO~ATION 
FROM A VISCOUS FLUID WITH BUBBLES* 

O.V. VOINOV 

The process of expansion of a large number of gas bubbles in incompressible viscous 
liquid is considered. The free boundary shape is determined, and the formation of 
liquid films at convergence of two gas bubbles is investigated. Amodelofregularly 
packed bubbles is used for determining the process of their deformation and of form- 
ation of films. 

Fundamentals of thermodynamics and static models of films were laid down in the works of 
Gibbs, Plato, and Rayleigh /l-33/. The hydrodynamics of films had attracted little attention. 

f. Statement of the problem. Let an incompressible viscous liquid contain a large 
number of gas bubbles of the same volume vwhich grow with time owing to the expansion of gas 
or because of liberation of gas from the liquid. Function V(t) is assumed known. The problem 

consists of determining the dependence of the shape of free boundaries on time. This implies 

the determination of formation of liquid films, their shape, and thickness. 
Construction of an approximate definition of the problem can be attempted in the case of 

fairly low rates of bubbles volume variation, when the capillary 

(1.1) 

where R, is the radius of a sphere of volume 1'. Then at the initial stage of bubble growth 
while the distance between their boundaries is small in comparison with their radii, their 
shape does not greatly differ form a sphere. Conditions (1.1) imply the smallness of dynamic 
stresses in comparison with capillary forces. At low Reynolds numbers (dRidt)Riv the first of 
conditions (1.1) is sufficient. 

When the distance between /bubble/surfacesis considerably smaller than the radii h<fi, 
the thin layer approximation can be used. The dynamics of a film symmetric about the plane 
rl,r, is defined by the equations /4/ 

h@Jdt = hF{ + hV* ('/,eAih -t_ n) + ZVjPjj(9) f Vjlhp (26fj div V -F_ ViVj + VjVi)l; i, j = 1, 2 (1.2) 

6pui = --hVjPij(Q, P,,C') = OS,j$- h, div ~6ij + ks (V,U~ +- Vj~i) 
div (hu + hv) = ---ah/& 

where v is the surface velocity, u is the liquid velocity relative to the surface, averaged 
over the film cross section, (3 is the surface tension coefficient, n is the disjoiningpressure 
(see, e.g., /S/),andP.,A,are the coefficients of the surface layer viscosity. Equations (1.2) 
are valid on conditions that the film thickness slowly varies along the coordinates A< 1, 
where 1 is the characteristic scale of variation of h and flow parameters, the Reynolds number 
hW(vl) (( 1, and the characteristic time r>h'!v. The force of gravity acts along the film, 
since the film length is fairly small r((a/(R~~~) and distortions of its middle plane are im- 
material. 

The equations are closed by supplementary relations for the determination of surface 
tension a which vary because of surface-active substances. We assume this effecttobeofsuch 
importance that variations of an area element of the film surface areindependentofits dynamics. 
To this corresponds a constant rate of surface expansion divv = const along the surface. The 
first of Eqs.cl.2) is then analogous to the Navier-Stokes equation, and the continuity equa- 
tion is used for determining the thickness h. Unlike in the plane problem for the Navier-Stokes 
equation, here, for the determination of motion at the boundary it is necessary to specify two 
supplementary scale conditions, because the equations are of the fourth order in h.Forexarnple, 
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four quantities u,. v2, h,&h may be specified along some linfi 1‘. 
In the considered here problem the boundary conditions for Eqs.il...:~ arc :.c,t ;1 priori 

known, and must be determined using the conditions of merc;ing the solctior: WI?!. vi:<= c<;!;l!.1:-.r. 

of equations in the reqion of large distances betweer. l?ubble surfaces. 

The free surface shape at fairly iarge distance from the adjacent bubbl? surfdc-1 ( ‘-.ti., 
external reqlon) is defined under conditions (1.1) by the equilibrium equatior 

where ,ua is the difference of pressures of gas pr ar.d llquld p,, Z: is the potczti :1 -at externa; 
mass forces, the subscript (0) corresponds to some poirl!. of the surface, and R, and /lJ L\TI~ 

the principal curvature radii. 

Equation (1.3) may be invalid in the region of small distances between bliSle surfaces, 

where it is necessary to consider (1.2). Let +Lhe film length between bubbles r considerably 
exceed its thickness and, also, the quantity k'?%. It LS then possible to introduce the fiim 
boundary r, a plane contour along which the distance between bubble surfaces becomes zer-<' 
relative to the large characteristic distance Itin the externdL region. 

If the bubble surface reaches the edge of the film at a fairly small an<j!e n, the thin 

layer approximation is valid not only inside the contcur r but, also, in some region outside 

it. At the boundary of region external to I‘the following conditions are to be specified for 

Eq. (1.3) : 
hlr 0. ’ ,dh!Cln jr 7 1?! % (1.4) 

To determine motions of the film it is necessary to stipulate that at the lixnlt h’h,,--+m 
outside I‘ the quantity h must approach the solution of the following equation with noilndary 

condition on r: 
'!,aAlc -1 PO, /L Ir := 0 (1.5) 

which corresponds to specifying two boundary conditions for (1.2). T7+0 forthi-r ,:onditLo:;s arc 

obtained from the condition of merging velocity L' ~lt:7 values i9 tie esterndl reg*ori. 

2. The jump of capillary pressure. In natural dimensioniess nota:ion ln the bolmd- 
ary condition (1.5) 

where h, is the small thickness of film inside r. appears the small scaie i - b'mh. The 

quantity l<z_r because the film proper exists only cnder this condition /4,F::. Since the 
passage from the external region to the film proper (the Inner rcgior.) takes 'r:!acp 1ri a narrow _- 
region, and there is a jump there. 

Analyzing the first of Eqs.cl.2) in variables of the small. scale (2.1) ar.d c:mnittin? smnl 

quantities of the order of Weber numbers hS:(?. I'r. I H. we obtain 

It can be shown that surface tension variation along the film is small \o '-" 0. E:ence in 

the condition for the normal stress on the surface tne coefficient 0 <:011.91. 

Equation (2.2: admits the integral 

(2.3) 

The velocity tangent to i‘is always continuous at the jump c, C~III:~, as can be seen from 

the theorem of momentum conservation in integral form. 
For the equation of continuity in (1.2) at the ]ump, as well as in (2.2), the one-dimen- 

sional approximation is sufficient. Calculation of II yields 

This equation is expressed in a system moving aionq the normal to [‘together with point 

1: --: 0 of that contour, r is the distance along the normal to I‘, and !0,, is the 1.0rmnl velocity 

of the point of contour I'. To close system (2.21, (2.3) It 1s necessary r i ti:c 1: cc have 
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equations that link CJ with the motion parameters and take L‘, as the variable, or consider 

the case of incompressible surface. In the latter case the closing relation is CF. - const 

along the coordinate. 
The condition of merging the solution with the solution of the problem in the inner re- 

gion is 
h -) h,. zfl-• -. 00 (2.51 

On the basis of (1.5) the condition of passing to the external solution is 

h -L /~!a , x/l --t x 

and by virtue of (1.5) and definition of line r, the external solution is 

1 (p&Y) 5% + h$i”, 
hfrt= I (po!“)z* $ 2tga.q 

llg\” > 0 

h$" < 0 

(2.6) 

12.7) 

The line I‘is defined as the line of zero thickness hce) or as the line of minimumofthat 

thickness (h$ = 0&J). 
The variation of (r along the jump and its total change over it is, on the basis of (2.31, 

(2.51, and (2.6), without taking into account for brevity the surface viscosity, of the form 

(2.8) 

At the formation of the film, when contour r widens (~,,>O)or is stationary and thinning 
of the film takes place /6/, the film surface inside contour 1‘ is more stretched thanoutside 
it, so that in conformity with /l/ we have ~~~,>a~,~. Then, as seen from (2.7) and (2.8),inthe 
case of IIFS 0 the external surface reaches the film along the tangent in scale K. and in the 
boundary condition (1.4) the angle %ZO. 

An angle a#0 is only possible when b<O,and CT~~~<D~~). When II ~0 (a film of macroscopic 
thickness) this is usually possible with compression of the surface inside contour r. However, 
even when angle 0~ can be determined from the equation of the jump (“(i) < ‘ttSv itsvalue remains 
negligibly small for the formulation of the equilibrium problem (1.3), if the thin Layer ap- 
proximation holds. 

It is important that by virtue of (2.8) small variations of surface tension J. - /lop0 or 
A- aa' always correspond to small film thicknesses h, and small angles a. 

Quasi-steady approximation. Passing to dimensionless notation and time t'- l,'r,where 
7 is the time scale of variation of contour f and capillary pressure ilo. we obtain the con- 
dition of validity of the quasi-steady approximation 7 ) l>n - u’,, \>lr. The characteristic time 
't, scale s, and velocity W, of contour r translation are interrelated 5 -w,,T, hence the 

last condition is equivalent to the inequality 

I/s << (I(', - C,).IU', (2.9) 

which is satisfied when the vel.ocity of contour r varies at large distance .sl> i and when the 
relative velocity is not too low in comparison with w,. At the formation of the film its di- 
mension r> 1 and condition (2.91 must be satisfied (s - r). 

Taking into account (2.51 and omitting the implicit dependence on time in (2_4),weobtain 

(2.10) 

where unO is the value of v,, generally a variable quantity, 
z/l-+ -x,)_ 

at the inner region boundary (as 

Consider the limit case of the incompressible surface r;, = const, restricting the in- 
vestigation to a macroscopically thick film, 11 = 0 (similar problems were considered in /6/ 
for IlfO. Substitution of variables (2.1) into (2.101, (2.5), and (2.7) so that 
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If the last inequality is satisfied, the film thickness is uniquely defined, in the op- 
ite case the solution contains one arbitrary parameter, which means that k, is not a quant- 
to be determined but must be specified. 

3. Equations outside the jump. Consider the regions inside and outside the contour 
. Dimension of the inner region is considerably larger than the scale r > 1. The scale 

of variation of functions with respect to the coordinate in the inner region is equal r, and 
with respect to time it is -T/W. and the characteristic thickness is -ho. The comparison of 
(1.2) with this equation taken into account, with Eq.(2.2) at the jump shows with an accuracy 
to small -&'r* it is possible to disregard the contribution of Ah in (1.2). Omitting also 
small quantities of the order of the Weber number, we have 

0-V. Voinov 

where c is so far an unknown quantity, results in the following problem for the determination 
of C: 

$)/f -. Y i 1 = 0, y I__ = I, yn I,_ c 

A similar problem was considered in /3/ for a steady flow. Numerical calculation yields 
c = 0.6429 , and from (2.11) we have 

h, = 2.675 ; ( I", U~,-u")-.o r(mne-"n) C2.12) 

hF, c hV,ll + 2VjP,,@) := (I (3.1) 

When the surface viscous stresses and mass forces (Parr< 2u)are small, (3.1) is intcgr- 
able 

2a + 
s 
’ 11 g dh = co11st (.?.?I 

In the case of macroscopic films the integral in (3.2) is to be neglected, and the 

surface tension in the inner region is constant. Variation of tension Aa(l, is asymptotically 

small in comparison with the tension A at the jump, viz. 

Note that Eq.(3.1) can be invalid at some sections of the inner region where h ::> h,. _ 

The equation of conservation of mass 

dh U.4 1 
dt 

= Zip div(FgradAk)-div(vh) 

is simplified if there is the small parameter 

n=*Ggl (3.5) 

where c is the scale of variation of parameters of motion of the film contour r, and T is the 

respective time variation (r-sslw,). In the region of scale s Eq.(3.4) in its principalapprox- 

imation with respect to the small parameter Q assumes the form 

ah/at = --div (hv) (j.6) 

which determines the film thickness in the inner region where s -r. 

Taking into account (2.11) makes it possible to represent condition (3.5) in the more 

convenient form 

Q--$-Q 11.;: 

Since ILL;, - “,,I< Jw,I, hence condition (3.7) is satisfied, if condition (2.9) of the 

quasi-steadiness of jump (2.9) is satisfied. 

In the region external to r, where the distance between free boundaries is large, the 

motion is defined by the Navier-Stokes equations in the region whose boundary is defined by 

the equilibrium equations(l.3). Taking into consideration that the Scale Of variation of 

functions is of the order of dimension H of the region, we shall estimate themaximumvariation 
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It follows from 
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under the action of the tangential stress 

As(r)- w - V/h-(%, - %) IrS(%, - %A Ir (3.8) 

(3.8) that in the case of thin films the tension in the external region 

is % = const. Thus the basic change of surface tension occurs in the jump region. By virtue 
of (3.3) the quantity O(I)--u(,) along r is constant. This supplementary condition imposedon 
the solution at the jump indicates the constancy of basic parameters along the boundary if 

% --u,>Q 
(w, - v,,) /r = const, h, 1,. = const (3.9) 

In this case h,ll" can be determined, if the quantity w,,--v,, is known. When on r ti:, - 

v,,< 0, the solution at the jump contains an additional parameter , and the quantity k, canvaxy 

along I?, and can be taken as a given quantity. 
The motion of liquid in the external region is induced by the change of the free surface 

shape which is defined by the quasi-steady equation (1.3) with variable parameters. Itdepends 
on the normal velocity of surface v~(~) along the line of return of the free surface r. The 

tangential velocity along ‘r must be bounded and is determined by solving the problem when 
the surface viscosity is zero. When the surface viscosity is non-zero, the tangential veloc- 
ity along r must be specified. 

4. Closing relations. It is generally necessary to consider the equations of trans- 
port of surface-active substances and take into account the isotherms of adsorbtion and sur- 
face tension. However, in important limit cases it is possible to do without these equations. 
If the effect of surface-active substances is considerable and the surface is incompressible 
under the action of viscous stresses, and the properties of the film surface do not differ 
from those of the surface of an infinitely deep liquid as regards variation of its area, the 
rate of change of surface elements is everywhere constant and corresponds to the respective 
rate of change of the bubble surface area s. In the film region we have 

din v = S-%,~idt (4.11 

In the second case surface tension in the film region may to a considerably greater ex- 
tent depend on the area element change, owing to its small thickness, than in the case of 
infinitely deep liquid surface. Then area elements of the film surface remain unchanged 

div Y = 0 (4.2) 

Formulas (1.31, (1.4) with a --:(I. and (2.10) or in the case 
of incompressible surface, (2.121, (3.6), and (3.91, as well as 
(4.1) or (4.2) constitute a closed definition in the case of one- 
dimensional problem. In multi-dimensional problems those formulas 
enable us to determine the total quantity of liquid in the film 
and,i.ts thickness along the edge depending on the time of its 
formation in the process. 

5. The shape of surface in the external region. In a system with tightly packed 
bubbles a small radius of contour r of the contact area corresponds to a small deformation of 
a spherical bubble, and the film is of small size. 
film formation. 

This particularly occurs at the incipient 

Let us consider on the assumption of deformation smallness the linearized problem of 
compression of a bubble of fixed volume I' by forces F,(a = i,Z?,...,2N) directed along the 
radius and representing the uniform additional pressure p. applied to small flat area elements 
of radius r 

The normal displacement 

where C, is the displacement 
forces F,, F,+N. 

lFa(=+p~ F%=-F~,.~, a=t, _.., m 

of bubble surface 

i&L', 
C.-l 

(5.11 

produced by the compression of the bubble between two planes by 
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BelOW, we consider fairly small bubbles, when it is possible to neglect t_h(, r,f:t,c'. \.! f 
gravitation (p.CR'~~~ ?a) on their shape. 

The problem of deformation of a bubble between two planes is axially synr~etrltr ,!':<j.:., 
hence in the domain 0.5 (B,, fi - 0,) Eq.ci.3) jn polar coordinates I!. 11 assumes the Fc:-r 

RJ t MO'_ - RRR,' 1 - LL'? (j/f,';/? " ,'n 

. 
I : 

(H, f /)"':)' ? (/P + IIR,z)“. 
..- - :: CO,,.~, 

: 
/ _’ . - 

Function f? (0) must he symmetric relatlvc to n/Z. ,? (0 -- ~'2) I{,--H : Y:!). k’l+h 3 ,i .a r ,_ 
slope tangent when tl 11,. Consequently 

ctg tl&' =- I?, 0 .-: 0,. II (8,)cos Ff, -= R, !>.-o 

where I?, is equal half of the distance between planes. 

The bubble volume is specified by 

For small deformations of bubbles 1 h’,.‘/? i--:z 1 and R is close to H, 

H .- II,, - 0. ' 6 / 'I H,. II, 2W/'* 

In the linear approximation 

ho." !- ,T,?' cln 0 26 := 0 
equation (5.2) has the sclution 

which is symmetric about x':!. Taking into account (5.3) we have 

(i ..Y .--- /I$*'. /& = /(,(I I 0," ln(Z:@*)---- 1 20*?) 

In these formulas only the asymptotically principal terms are taken into accountwith$-+ 

iI . The quantities ii,, and /?, are expressed in terms of the radius of a sphere of equivalent 

volume R, --- (W'(&))' :: 
/:,, = I 1 .-. ’ n O*‘) II,: II, (1 - O,*In(% 0,) .- L.I:0,2)/:. ; ‘i . 4 ) 

The normal displacement of the COntaCt area is equal 

(,.'1 = /I: -.-- I[" =('!,0*2 - g** In(2/t),))R, (0 ..<F)*) : 5 . :: ) 

The normal displacement of the surface away from the contact area is 

The linearized equatron differs from the exact one (5.2) by a small quantityof t:ic or~ier 

of U,* In (i/n,) when 11, - 0 . 

6. Formation of films on regularly packed bubbles. Let the bubble centers :le 

at the nodes of a regular grid, with the individual cells in the form of dodecahedrons. AS 

the gas bubbles expand, the system of liquid and bubbles uniformly exapands. When thebubblr?s 

are symmetrically disposed, .viscous forces act symmetrically at low Reynolds numbers, hence 

their resultant is zero and there is no relative displacement of bubbles. 
In a rhombododecahedron (with all faces of the form of rhombuses) a normal to the fdcf 

is at the angle of 60° to the normal lines to four pairs of opposite faces and at go0 Lo one 

of such lines. Hence from formulas (5.11, (5.5), and (5.6) for the displacement of an area 

element we have 
1. _ I(, -- I{,.- - [I,, 6;! .- +jg (I,. i! 

Consideringthatthecellvolurr,c 4 i;'T~,z is equal 1' : I',, where V, isthevolumecf liquicl, 

from (6.1) wehavc E _ H,, II - n/3 V'i-) d/l, -- 
dl 2r (In (6N,lr) --'I) df 

(t,.i‘! 

Forsmall r velocity L'+ OL I‘, dctermincdbythebubble surface expansion., is of the ?~::ai! 

order r, hence 
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(G - u,) jr = dridt + 0 (rR,‘IR,) (6.3) 

From (6.2), (6.3), and (2.12) for the dependence of the incipient film thickness on the 

distance from the bubble center we have the formula 

(6.4) 

It follows from (6.4) that the film thickness substantially varies along the radius,with 

considerable thickening at the center. Its maximum thickness is determined by the condition 

0X-r of appearance of the jump. This also yields the characteristic minimal dimension 

r at which the film is formed. By order of magnitude 

Formula (6.4) implies that a fairly high convergence velocity of bubble surfaces at the 

instant of their collision is needed for obtaining thick films. The higher the rate of gas 
release, the thicker is the film. The same effect is produced by the liquid viscosity +1. 

7. Formation of films in a developed foam. In the limit case of stronglydeformed 

bubbles the liquid is concentrated in narrow filaments (the Plato-Gibbs channels) along the 

edges of polyhedrons. Everywhere, except at vertices, one curvature radius is smaller than 

the second R,<R,. Taking into account (1.3) with pgR,z<a and (1.4) with angle %-II (Sect.2) 

we find that the cross section of channels is represented by three tangent circles of the came 

radius R,, as is the case in the static problem /1,3/. 
It is convenient to represent the volumes of liquid Yt and of bubble V by formulasinterms 

of the initial n, (when li= 0) or the current number n of bubbles in a unit of volume and, also, 

in terms of the volume part of liquid y 

noI'* = 1, n (V + 1'*) = 1, y = V*/(V + V,), II = ';no (7.1) 

Consider a foam consisting of regular polyhedrons. When I{,4 R, the half distance R, be- 

tween opposite films in a cell, and for the volume of liquid in the cell we have the approxi- 

mate formulas 

In the case when the film surface expansion takes place at the rate of gas bubble expan- 

sion (Sect.4) we have 

In the case of a nonexpandable film (Sect.4) 

(7.2) 

(7.3) 

formulas (7.2) or (7.3) and (2.12) yield expressions for the formed film whichdifferfrom 

(6.4) by that the thickness variation is now linked only with the variation in time of RlIR,. 
R;. In the case of (7.2) the variation of film thickness is also due to its uniform expansion. 

It is important that in the case of nonexpandable film (7.3) its thickness ismuch greater 

( - vw~1~~ z times) than in the case of the everywhere uniformly expanding bubble surface (7.2). 

formation of films ceases when velocity R, drops to such an extent that condition (2.9) 
does no longer hold. After that it is necessary to solve the problem of thinning of the film. 
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